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EX ECUTIVE SUMMARY 

This study was initiated to chemically characterize non-toxic effluents from four Los Angeles County 
Sanitation Districts water reclamation plants (WRP). Although toxicity at these facilities is relatively 
uncommon, investigating the occurrence of toxicity often takes considerable resources and doesn’t always 
identify a causative agent. Inspired by some groundbreaking non-targeted analyses, the goals of this study 
were to 1) evaluate in-house analytical capabilities and resolution of the chemical “fingerprint” of non-toxic 
effluents, 2) assess dissimilarity among samples using cluster analysis and 3) identify defining patterns such as 
variance by facility or season. Based upon the successful sampling, toxicity testing, and extensive chemical 
analyses, each of these goals was attained. Over 120 non-toxic final effluent samples were collected, scanned, 
and separated into clusters based on similarity in pesticide and metals scan results. These results suggest that 
low-resolution, semi-quantitative, chemical scans can provide sufficiently robust results to create a suite of 
chemical characteristics of non-toxic effluent and potentially, to differentiate between water reclamation 
facilities. While promising, this work should be continued to evaluate whether such clustering can be used to 
help identify characteristics and, ultimately, target constituents in samples exhibiting toxicity. 

B ACKGROUND AND INTRODUCTION 

Historically, toxicity has been relatively infrequent in Los Angeles County Sanitation Districts (Sanitation 
Districts) final effluent samples, with only about 15% of final effluent toxicity tests being identified as “toxic” 
since the Test of Significant Toxicity (TST) was implemented in permits. Efforts to identify the cause(s) of 
toxicity are typically resource-intensive and have rarely been successful due to the transient and episodic 
characteristic of occurrence. Toxic samples have historically been investigated using a toxicity identification 
evaluation (TIE) approach to characterize toxicant(s) contributing to observed effects. If toxicity is transient or 
at low levels, this approach is especially challenging due to the lack of repeatability often encountered and 
the rapid disappearance of toxicity, typically within days of occurrence. However, chemical analyses can also 
be used to supplement or confirm results from TIE studies by ruling out common chemical compounds that 
are difficult to isolate through TIE manipulations, and stored samples can be analyzed well after the toxicity 
test has been completed.  

This chemical testing for toxicity identification has historically focused on targeted analyses (e.g., the 
presence and concentrations of specific, commonly-encountered compounds such as ammonia, metals, and 
pesticides). This approach relies upon previously identified toxic thresholds for individual analytes or groups 
with similar modes of action (i.e., those expected to have additive effects). Thresholds are typically 
determined through studies looking at only a single toxicant in a far less complex matrix than WRP effluent. In 
addition, the selection of the targeted analytes is limited by knowledge bias and tends to focus on previously 
identified problem chemicals.  

A more recent approach removes the knowledge bias by using non-targeted analyses (NTA) to identify 
toxicants (e.g., Peter et al., 2018). In this approach, samples are scanned for a broad range of signals 
corresponding to both known and unknown compounds, thereby creating a chemical “fingerprint.” A 
clustering analysis is then applied to the resulting data, to quantify the magnitude of the similarities between 
profiles (i.e., results from all chemical analyses performed) and identify groups or clusters that share similar 
characteristics. The number of clusters in an analysis can vary between one (all samples in a single cluster) 
and the number of samples (each sample in its own cluster). Neither of these extreme cases is particularly 
informative to identify toxicants; the former provides no differentiation because all samples are considered 
similar, while the latter provides no insights because each sample is unique. An “optimal” number of clusters 



would balance compression (creating fewer clusters to group more results together) and accuracy (creating 
more clusters to differentiate among results), and would contain groups of samples whose characteristics are 
distinct from others, ideally based on some known feature such as season or location. Hierarchical clustering 
analysis (HCA) is a commonly used method, because the number of clusters in the analysis do not need to be 
specified beforehand and is, therefore, determined based on the specific patterns observed in the data.  HCA 
defines similarity based on Euclidean distance, which is the mathematical “distance” between two data 
points. In this case, the distance between samples is calculated using the differences in the measured 
concentration values for all analytes (i.e., the differences between the complete chemical profiles of the 
samples). The shorter the Euclidean distance, the more similar two points or samples are to each other; 
groups of data points that are close together form clusters of samples that share similar chemical profiles.   

NTA offers clear advantages over traditional toxicity identification methods, since it analyzes both known and 
unknown compounds, and the sources of toxicity are often unknown. However, it does require development 
of baseline chemical scans of non-toxic samples for comparison with toxic sample profiles. In addition, it 
typically uses highly specialized instrumentation that can detect species at very low concentrations while 
producing very high-resolution data. This type of instrumentation is relatively expensive and is not readily 
available in many wastewater laboratories. 

This study employed a hybrid approach that combines the advantages and mitigates the disadvantages of the 
targeted and non-targeted analyses, through the use of broad spectrum chemical scans. The goal was to 
develop a baseline for non-toxic effluent samples by determining concentrations of a broad but defined range 
of targeted chemical parameters, using analytical instruments and lower resolution methods that are 
available in the Sanitation Districts’ San Jose Creek and Joint Water Pollution Control Plant laboratories. 
Analyzing this broad range of constituents allows for examination of potential toxicants beyond those 
typically tested during toxicity investigations, and the associated clustering analysis could enable identification 
of similarities in effluent by plant or by season. If successful, this approach might represent a more 
economical starting point for less knowledge biased chemical investigations.  

METHODS 

Sample Collection 

The samples analyzed for this study were collected for toxicity testing under National Pollutant Discharge 
Elimination System (NPDES) permits. Since the goal of this study was to associate chemical fingerprints in the 
absence of toxicity (as defined using standard USEPA whole effluent toxicity testing protocols and the TST 
statistic), sample collection deviated significantly from what would normally be used for chemical analyses. 
Flow-weighted 24-hour composite samples were used in all cases. These composite samples were collected in 
non-air-tight containers and then poured into low-density polyethylene (LDPE) containers. A typical toxicity 
test uses three samples, with each being used for one to three days. The sampling strategy, as well as the 
methods employed in the toxicity tests, strongly suggested that volatile compounds were unlikely to be 
present in measurable concentrations; these compounds were therefore excluded from analysis for this 
study. Chemical screening included a metals scan, semi-volatile organics, and a current-use pesticide suite. 

The four WRPs shown in Table 1 were sampled at least three times monthly for one year, from July 2019 to 
June 2020. These WRPs were selected to represent the diversity in size, influent source, and treatment 
methods. Because the goal was to evaluate non-toxic effluent, if a test identified the effluent(s) as toxic, 



another set of screens was run using the additional toxicity samples collected in an effort to meet a monthly 
median. 

Table 1. Study WRPs 

WRP NPDES No. Characteristics 

Los Coyotes (LC) CA0054011 
Step-feed activated sludge treatment facility with chlorine-based 
disinfection, lowest frequency of observed toxicity and highest 

industrial influent base for WRPs at 14% 

Whittier Narrows (WN) CA0053716 
Small Modified Ludzack-Ettinger (MLE) activated sludge 

treatment facility with UV disinfection 

Pomona (PO) CA0053619 
Small Modified Ludzack-Ettinger (MLE) activated sludge 

treatment facility with chlorine-based disinfection 

San Jose Creek East (SJ) CA0053911 Step-feed activated sludge treatment facility with chlorine-based 
disinfection, higher frequency of observed toxicity 

 

Whole Effluent Toxicity Testing 

Each WRP monitored in this study used the water flea, Ceriodaphnia dubia, as the chronic toxicity test 
species. Tests were conducted according to the Short-term Methods for Estimating the Chronic Toxicity of 
Effluents and Receiving Waters to Freshwater Organisms (USEPA 2002). Ceriodaphnia dubia were exposed in 
a static renewal system to different concentrations of effluent for a period of six to eight days. Tests were 
terminated on the day when at least 60% of the surviving female control organisms had three broods or eight 
days after test initiation, whichever occurred first. Test results were based on survival and reproduction; sub-
lethal (i.e., reproduction) toxicity was determined using the Test of Significant Toxicity (TST) test statistic, as 
required by each WRP’s NPDES permit. All method-defined Test Acceptability Criteria (TAC) were met or the 
toxicity test was considered invalid and repeated. TAC include the requirements that there must be at least 
80% control survival and the surviving control organisms produce at least an average of 15 or more young in 
the three broods. 
 
Chemical Scans 

Broad-spectrum scans were conducted for 85 analytes using three analytical methods. A custom high-
performance liquid chromatography (HPLC) scan was utilized for current use pesticides (Appendix A). Samples 
were scanned for metals using inductively coupled plasma mass spectrometry (ICP-MS) and the semi-
quantitative feature of the instrument software to give estimates of an extended analyte list (Appendix A) 
that is not limited to the analyte lists found in the Sanitation Districts’ fully quantitative metals methods (e.g., 
EPA 200.8). Finally, gas chromatography-mass spectroscopy (GCMS) with solid-phase extraction (XO3) was 
used for semi-volatile compounds. All analyses were conducted by the Sanitation Districts’ San Jose Creek 
Water Quality Laboratory. Sampling and analysis began in July 2019 and ended in June 2020.  

Data Analysis 

All raw data are maintained within both the Sanitation Districts’ document management system database and 
Laboratory Information Management System. All data analysis was conducted using the R statistical 
computing platform. HCA was performed to compute the Euclidean distance between samples, using analyte 
concentrations and the HCUT function in the factoextra R package.  



Clusters were developed using average, complete, and centroid methods, then evaluated for method 
differences. HCA does not require a specific number of clusters; instead, a statistically “optimal number of 
clusters” was identified using the “fviz_nbclustering” function. Use of this function provided an objective and 
statistically meaningful approach to select cut points (i.e., using established algorithms to balance between 
maximum compression and accuracy) along the resulting dendrograms, which was supplemented with 
professional judgement. This analysis was conducted using the gap statistic (Tibshirani et al. 2001), elbow 
method (based upon the total within-cluster sum of squares as a function of the number of clusters), and 
silhouette (Kaufman and Rousseeuw, 1990) approaches for comparison. Although 2 and 10 clusters were 
identified using differing techniques, a post-hoc HCA was also conducted using four clusters due to its 
relevance as an intermediate between the identified cluster sizes and its relevance to suspected contributing 
factors (i.e., seasonality and WRP). 

Once a target number of clusters was identified, clustering analyses were finalized and the resulting 
dendrograms were created using the dendextend package. Select analytes were excluded from the clustering 
analysis. Specifically, carbon was excluded because its high concentration in all samples might effectively 
quench other signals; nitrogen and chlorine were also censored due to high concentrations (relative to most 
analytes) and the fact that all samples were dechlorinated before exposing test organisms. Finally, select rare-
earth metals were added to the analyte list in January 2020 but were excluded from data analysis to maintain 
a consistent analyte list. 

RESULTS 

Sample Collection and Analysis 

During this study, there were no sampler failures at any of the four, targeted WRPs during the study term; the 
sampling success was 100%, exceeding the Sanitation Districts’ Receiving Water Quality Assurance Project 
Plan goal of 90%. In total, 122 non-toxic samples were successfully collected and analyzed for chemical 
fingerprints. Additional samples that were submitted for chemical analyses but were subsequently found to 
be toxic were excluded from this analysis; consequently, the number of samples varies among the plants. 
Analytes that had no detections in any samples (amphetamine, spiroxamine, malathion, dimethoate, 
dichlorvos, spirotetramat, holmium, tantalum, and rhodium) were also excluded from the data analysis in an 
effort to reduce cluster skew.  

Whole Effluent Toxicity Testing 

Because each toxicity test requires at least three samples, there are far more samples than toxicity test 
results. Overall, the observed frequency of toxicity during this study was comparable to historical results from 
2007 to 2019, with the exception of the San Jose Creek East WRP, where 17 of the 28 toxicity tests exhibited 
toxicity; chemical scans for tests exhibiting a toxic response were not used in this analysis. 

D I SCUSSION 

Based upon the three cluster optimization models (gap statistic, elbow, and silhouette), two optimal cluster 
sizes were identified. The elbow method was unable to identify an optimal number of clusters and was not 
utilized further; the silhouette method identified two as the optimal number of clusters, and the gap statistic 
identified ten clusters as the optimum (Figures 1a, 1b, 1c).  



Euclidean distance based, hierarchical clustering was conducted on the analytical chemistry results using two, 
four, and ten clusters. Figure 2 shows a color-coded dendrogram for the most conclusive (ten-cluster) 
analysis, and the accompanying summary tables (Tables 2 and 3) shows the cluster breakdown by WRP and 
month. The two- and four-cluster models were also analyzed but did not yield insights beyond the ten-cluster 
model (Appendix B).   

In the dendrogram analysis, distances between clusters represent similarity in chemical characteristics; 
clusters that are farther apart are less similar. In an effort to identify unique chemical characteristics among 
clusters, outliers (i.e., clusters on the edges of the dendrogram) were analyzed in the two-, four-, and ten-
cluster models; however, no patterns by WRP or season were found. 

 

Figure 1. Cluster Optimization Output. a: Elbow Method; b: Silhouette Method; c: Gap Statistic Method 
(Dashed vertical line represents optimal number of clusters as determined by the algorithm) 

   

 

 

 



As shown in Figure 2 and Table 2, there was a recognized differentiation between WRPs and “noise” or 
outliers. Cluster 1 (circled in light blue) was dominated by Whittier Narrows WRP samples, Cluster 2 (circled in 
green) was dominated by Los Coyotes WRP samples, and Cluster 4 (circled in dark blue) was dominated by 
Saugus and San Jose Creek East WRP samples. Based on these non-toxic samples, it does appear that effluent 
from different WRPs can be identified on most occasions using the analytical chemistry capabilities currently 
employed by the Sanitation Districts’ laboratories. No such fingerprints were identified based on seasonality 
(Table 3), which might be expected given the strong clustering by WRP that could mask other weaker clusters. 

 

Figure 2. Hierarchical Clustering of Effluent Chemical Analyses Using Ten Clusters 

 
 
 

To date, the specific chemical characteristics that define the clusters have not been identified. The relatively 
close distance between the WRP clusters on the dendrogram likely indicates that the chemical characteristics 
are relatively similar between these clusters, compared to outlying clusters. This similarity makes 
identification of the unique chemical signal of each cluster (possibly resulting from slight variations among 
multiple analytes) more difficult. Further analyses of the data may help differentiate the characteristics 
among WRP clusters, but may be limited by the relatively small analyte list compared to high-resolution NTA 
scans reported in the literature (e.g., Ulrich et al. 2019), the number of samples analyzed, and low levels of 
some compounds in the broad spectrum scans (i.e., number of non-detected analytes). 

 



Table 2. Ten-Cluster Population by WRP 

 

 

 

Table 3. Ten-Cluster Population by Month 

Cluster Population by Month - 10 Cluster Model 
Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 2 0 2 0 0 3 3 3 3 4 3 2 
2 3 0 2 0 0 3 3 2 3 2 1 4 
3 0 0 0 0 0 0 3 0 0 0 0 0 
4 4 0 0 3 3 4 0 6 3 8 9 3 
5 0 0 0 0 0 0 0 0 0 1 2 0 
6 6 6 0 0 0 0 0 0 0 0 0 0 
7 0 4 0 0 0 0 0 0 0 0 0 0 
8 0 0 1 0 0 0 0 0 0 0 0 0 
9 0 0 2 0 0 0 0 0 0 0 0 0 

10 0 0 5 0 0 0 0 0 0 0 0 0 
 

 

C ONCLUSIONS 

The overall goal of this study was achieved: broad spectrum, semi-targeted chemical scans utilizing analytical 
methods currently employed by the Sanitation Districts’ laboratories were applied to non-toxic effluent 
samples, and were successfully used to identify clusters of samples with similar chemical characteristics, 
based on WRP. No such fingerprints were identified based on seasonality (i.e., by month) using the two, four, 
or ten cluster models.  

In analyzing the data, the tabulation and visualization of analytical output were found to be both 
complementary and necessary to identify relevant patterns. Dendrograms allowed visual identification of 
clusters but tabulation clearly delineated the strong clustering by WRP, thus demonstrating the importance of 
presenting results in multiple formats.  

Cluster Population by WRP – 10 Clusters 
Cluster WN LC SA SJ 

1 23 1 1 0 
2 1 21 1 0 
3 0 1 2 0 
4 1 1 18 23 
5 0 2 0 1 
6 3 0 4 5 
7 0 3 0 1 
8 1 0 0 0 
9 0 2 0 0 
10 0 2 3 0 

 



This study also revealed some potential limitations of this approach: (1) the specific chemical characteristics 
that define the WRP clusters have not yet been identified, and (2) the ability to resolve the differences 
between samples may be limited by the relatively small analyte list and sample size, and the low levels of 
some compounds in the broad spectrum scans (i.e., number of non-detected analytes). However, continued 
advances in methodology and instrumentation technology are expected to improve the resolution on this 
type of analysis, particularly for issues associated with non-detections.  

In summary, this study provides evidence that effluents from WRPs can be differentiated based on chemical 
characteristics. The success observed in this study in differentiating among facilities for non-toxic samples 
suggests that the approach may also be useful in differentiating between “toxic” and “non-toxic” samples. 
Future studies are under development, to evaluate whether the profiles for the “toxic” and “non-toxic” 
samples are sufficient to aid in the identification of chemicals associated with toxicity events, WRP upsets, 
etc. This study is the first of its type for the Sanitation Districts and is expected to set a strong baseline for the 
chemical characterization of effluent.  
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Appendix A: Target Analytes 
 

Current Use Pesticide 
Screen 

Metals Scan Metals Scan Metals Scan 

DEET Beryllium Selenium Neodymium 
Imidacloprid Boron Bromine Samarium 

Diuron Sodium Rubidium Europium 
Thiamethoxam Magnesium Strontium Gadolinium 

Acephate Aluminum Yttrium Dysprosium 
Naled Silicon Zirconium Erbium 

Chlorpyrifos Phosphorous Niobium Thulium 
Carbaryl Sulfur Molybdenum Ytterbium 

Carbofuran Potassium Rutherfordium Lutetium 
Diazinon Calcium Palladium Hafnium 

Acetamiprid Titanium Silver Tungsten 
Thiacloprid Vanadium Cadmium Rhenium 
Propoxur Chromium Tin Osmium 
Imazalil Manganese Antimony Iridium 
Metaxyl Iron Tellurium Platinum 

Methamphetamine Cobalt Iodine Gold 
Paclobutrazol Nickel Cesium Mercury 

Boscalid Copper Barium Thallium 
Micobutanil Zinc Lanthanum Lead 
Azoxystrobin Gallium Cerium Bismuth 

Piperonyl Butoxide Arsenic Praseodymium Thorium 
   Uranium 

 
 
 

 

 



Appendix B. Additional Output 

Figure B.1. Complete Hierarchical Clustering of Effluent Chemical Analyses Using Ten Clusters 
 

 

 



Figure B2. Hierarchical Clustering of Effluent Chemical Analyses Using Two Clusters 

 

 
Table B.1. Two-Cluster Population by WRP  

Cluster Population by WRP 
– 2 Clusters 

Cluster WN LC SA SJ 
1 26 30 25 24 
2 3 3 4 6 



 
 
Table B.2. Two Cluster Population by Month 

C luster Population by Month – 2 Cluster Model 
Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 9 0 12 3 4 9 9 11 9 15 15 9 
2 6 10 0 0 0 0 0 0 0 0 0 0 

 
Figure B.2 and Tables B.1 and B.2 demonstrate that the two-cluster HCA clearly lacked discriminatory power between WRP or month/season. In 
both cases, the vast majority of samples were in Cluster 1; the lone exception was February, where all samples were contained in Cluster 2. The 
cause of this clustering is unclear but could be due to actual differences in water quality or artifacts in the statistical or laboratory analysis (e.g., a 
lower detection limit or less interference).  
 
 
Figure B.3. Hierarchical Clustering of Effluent Chemical Analyses Using Four Clusters 

 

 



Table B.3. Four Cluster Population by WRP 
Cluster Population by WRP - 4 Cluster Model 
Cluster WN LC SA SJ 
1 25 3 21 23 
2 1 23 1 1 
3 3 3 4 6 
4 0 4 3 0 

 
 
Table B.4. Four Cluster Population by Month 

C luster Population by Month – 4 Cluster Model 
Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 6 0 3 3 3 7 6 9 6 12 12 5 
2 3 0 2 0 0 3 3 2 3 3 3 4 
3 6 10 0 0 0 0 0 0 0 0 0 0 
4 0 0 7 0 0 0 0 0 0 0 0 0 

 

 
Figure B.3 and Tables B.3 and B.4 demonstrate that the four-cluster HCA had reduced discriminatory power between WRPs or month/season, 
compared to the ten-cluster HCA. In the analysis by plant (Table B.3), the Los Coyotes WRP samples dominate Cluster 2, but the other three plants 
primarily fall into Cluster 1 and cannot be differentiated. In the analysis by month (Table B.4), nearly all samples were contained in clusters one 
and two (Table B.4). As with the two-cluster model, there was little discrimination between months, with the exception of February of 2020, 
where nearly all samples were in a single cluster.  
 


